Source code for cassandra.util

# Copyright DataStax, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import with_statement
import calendar
import datetime
from functools import total_ordering
import logging
from itertools import chain
import random
import re
import six
import uuid
import sys

_HAS_GEOMET = True
try:
    from geomet import wkt
except:
    _HAS_GEOMET = False


from cassandra import DriverException

DATETIME_EPOC = datetime.datetime(1970, 1, 1)
UTC_DATETIME_EPOC = datetime.datetime.utcfromtimestamp(0)

_nan = float('nan')

log = logging.getLogger(__name__)

assert sys.byteorder in ('little', 'big')
is_little_endian = sys.byteorder == 'little'


[docs]def datetime_from_timestamp(timestamp): """ Creates a timezone-agnostic datetime from timestamp (in seconds) in a consistent manner. Works around a Windows issue with large negative timestamps (PYTHON-119), and rounding differences in Python 3.4 (PYTHON-340). :param timestamp: a unix timestamp, in seconds """ dt = DATETIME_EPOC + datetime.timedelta(seconds=timestamp) return dt
[docs]def utc_datetime_from_ms_timestamp(timestamp): """ Creates a UTC datetime from a timestamp in milliseconds. See :meth:`datetime_from_timestamp`. Raises an `OverflowError` if the timestamp is out of range for :class:`~datetime.datetime`. :param timestamp: timestamp, in milliseconds """ return UTC_DATETIME_EPOC + datetime.timedelta(milliseconds=timestamp)
[docs]def ms_timestamp_from_datetime(dt): """ Converts a datetime to a timestamp expressed in milliseconds. :param dt: a :class:`datetime.datetime` """ return int(round((dt - UTC_DATETIME_EPOC).total_seconds() * 1000))
[docs]def unix_time_from_uuid1(uuid_arg): """ Converts a version 1 :class:`uuid.UUID` to a timestamp with the same precision as :meth:`time.time()` returns. This is useful for examining the results of queries returning a v1 :class:`~uuid.UUID`. :param uuid_arg: a version 1 :class:`~uuid.UUID` """ return (uuid_arg.time - 0x01B21DD213814000) / 1e7
[docs]def datetime_from_uuid1(uuid_arg): """ Creates a timezone-agnostic datetime from the timestamp in the specified type-1 UUID. :param uuid_arg: a version 1 :class:`~uuid.UUID` """ return datetime_from_timestamp(unix_time_from_uuid1(uuid_arg))
[docs]def min_uuid_from_time(timestamp): """ Generates the minimum TimeUUID (type 1) for a given timestamp, as compared by Cassandra. See :func:`uuid_from_time` for argument and return types. """ return uuid_from_time(timestamp, 0x808080808080, 0x80) # Cassandra does byte-wise comparison; fill with min signed bytes (0x80 = -128)
[docs]def max_uuid_from_time(timestamp): """ Generates the maximum TimeUUID (type 1) for a given timestamp, as compared by Cassandra. See :func:`uuid_from_time` for argument and return types. """ return uuid_from_time(timestamp, 0x7f7f7f7f7f7f, 0x3f7f) # Max signed bytes (0x7f = 127)
[docs]def uuid_from_time(time_arg, node=None, clock_seq=None): """ Converts a datetime or timestamp to a type 1 :class:`uuid.UUID`. :param time_arg: The time to use for the timestamp portion of the UUID. This can either be a :class:`datetime` object or a timestamp in seconds (as returned from :meth:`time.time()`). :type datetime: :class:`datetime` or timestamp :param node: None integer for the UUID (up to 48 bits). If not specified, this field is randomized. :type node: long :param clock_seq: Clock sequence field for the UUID (up to 14 bits). If not specified, a random sequence is generated. :type clock_seq: int :rtype: :class:`uuid.UUID` """ if hasattr(time_arg, 'utctimetuple'): seconds = int(calendar.timegm(time_arg.utctimetuple())) microseconds = (seconds * 1e6) + time_arg.time().microsecond else: microseconds = int(time_arg * 1e6) # 0x01b21dd213814000 is the number of 100-ns intervals between the # UUID epoch 1582-10-15 00:00:00 and the Unix epoch 1970-01-01 00:00:00. intervals = int(microseconds * 10) + 0x01b21dd213814000 time_low = intervals & 0xffffffff time_mid = (intervals >> 32) & 0xffff time_hi_version = (intervals >> 48) & 0x0fff if clock_seq is None: clock_seq = random.getrandbits(14) else: if clock_seq > 0x3fff: raise ValueError('clock_seq is out of range (need a 14-bit value)') clock_seq_low = clock_seq & 0xff clock_seq_hi_variant = 0x80 | ((clock_seq >> 8) & 0x3f) if node is None: node = random.getrandbits(48) return uuid.UUID(fields=(time_low, time_mid, time_hi_version, clock_seq_hi_variant, clock_seq_low, node), version=1)
LOWEST_TIME_UUID = uuid.UUID('00000000-0000-1000-8080-808080808080') """ The lowest possible TimeUUID, as sorted by Cassandra. """ HIGHEST_TIME_UUID = uuid.UUID('ffffffff-ffff-1fff-bf7f-7f7f7f7f7f7f') """ The highest possible TimeUUID, as sorted by Cassandra. """ def _addrinfo_or_none(contact_point, port): """ A helper function that wraps socket.getaddrinfo and returns None when it fails to, e.g. resolve one of the hostnames. Used to address PYTHON-895. """ try: value = socket.getaddrinfo(contact_point, port, socket.AF_UNSPEC, socket.SOCK_STREAM) return value except socket.gaierror: log.debug('Could not resolve hostname "{}" ' 'with port {}'.format(contact_point, port)) return None def _addrinfo_to_ip_strings(addrinfo): """ Helper function that consumes the data output by socket.getaddrinfo and extracts the IP address from the sockaddr portion of the result. Since this is meant to be used in conjunction with _addrinfo_or_none, this will pass None and EndPoint instances through unaffected. """ if addrinfo is None: return None return [(entry[4][0], entry[4][1]) for entry in addrinfo] def _resolve_contact_points_to_string_map(contact_points): return OrderedDict( ('{cp}:{port}'.format(cp=cp, port=port), _addrinfo_to_ip_strings(_addrinfo_or_none(cp, port))) for cp, port in contact_points ) try: from collections import OrderedDict except ImportError: # OrderedDict from Python 2.7+ # Copyright (c) 2009 Raymond Hettinger # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. from UserDict import DictMixin class OrderedDict(dict, DictMixin): # noqa """ A dictionary which maintains the insertion order of keys. """ def __init__(self, *args, **kwds): """ A dictionary which maintains the insertion order of keys. """ if len(args) > 1: raise TypeError('expected at most 1 arguments, got %d' % len(args)) try: self.__end except AttributeError: self.clear() self.update(*args, **kwds) def clear(self): self.__end = end = [] end += [None, end, end] # sentinel node for doubly linked list self.__map = {} # key --> [key, prev, next] dict.clear(self) def __setitem__(self, key, value): if key not in self: end = self.__end curr = end[1] curr[2] = end[1] = self.__map[key] = [key, curr, end] dict.__setitem__(self, key, value) def __delitem__(self, key): dict.__delitem__(self, key) key, prev, next = self.__map.pop(key) prev[2] = next next[1] = prev def __iter__(self): end = self.__end curr = end[2] while curr is not end: yield curr[0] curr = curr[2] def __reversed__(self): end = self.__end curr = end[1] while curr is not end: yield curr[0] curr = curr[1] def popitem(self, last=True): if not self: raise KeyError('dictionary is empty') if last: key = next(reversed(self)) else: key = next(iter(self)) value = self.pop(key) return key, value def __reduce__(self): items = [[k, self[k]] for k in self] tmp = self.__map, self.__end del self.__map, self.__end inst_dict = vars(self).copy() self.__map, self.__end = tmp if inst_dict: return (self.__class__, (items,), inst_dict) return self.__class__, (items,) def keys(self): return list(self) setdefault = DictMixin.setdefault update = DictMixin.update pop = DictMixin.pop values = DictMixin.values items = DictMixin.items iterkeys = DictMixin.iterkeys itervalues = DictMixin.itervalues iteritems = DictMixin.iteritems def __repr__(self): if not self: return '%s()' % (self.__class__.__name__,) return '%s(%r)' % (self.__class__.__name__, self.items()) def copy(self): return self.__class__(self) @classmethod def fromkeys(cls, iterable, value=None): d = cls() for key in iterable: d[key] = value return d def __eq__(self, other): if isinstance(other, OrderedDict): if len(self) != len(other): return False for p, q in zip(self.items(), other.items()): if p != q: return False return True return dict.__eq__(self, other) def __ne__(self, other): return not self == other # WeakSet from Python 2.7+ (https://code.google.com/p/weakrefset) from _weakref import ref class _IterationGuard(object): # This context manager registers itself in the current iterators of the # weak container, such as to delay all removals until the context manager # exits. # This technique should be relatively thread-safe (since sets are). def __init__(self, weakcontainer): # Don't create cycles self.weakcontainer = ref(weakcontainer) def __enter__(self): w = self.weakcontainer() if w is not None: w._iterating.add(self) return self def __exit__(self, e, t, b): w = self.weakcontainer() if w is not None: s = w._iterating s.remove(self) if not s: w._commit_removals() class WeakSet(object): def __init__(self, data=None): self.data = set() def _remove(item, selfref=ref(self)): self = selfref() if self is not None: if self._iterating: self._pending_removals.append(item) else: self.data.discard(item) self._remove = _remove # A list of keys to be removed self._pending_removals = [] self._iterating = set() if data is not None: self.update(data) def _commit_removals(self): l = self._pending_removals discard = self.data.discard while l: discard(l.pop()) def __iter__(self): with _IterationGuard(self): for itemref in self.data: item = itemref() if item is not None: yield item def __len__(self): return sum(x() is not None for x in self.data) def __contains__(self, item): return ref(item) in self.data def __reduce__(self): return (self.__class__, (list(self),), getattr(self, '__dict__', None)) __hash__ = None def add(self, item): if self._pending_removals: self._commit_removals() self.data.add(ref(item, self._remove)) def clear(self): if self._pending_removals: self._commit_removals() self.data.clear() def copy(self): return self.__class__(self) def pop(self): if self._pending_removals: self._commit_removals() while True: try: itemref = self.data.pop() except KeyError: raise KeyError('pop from empty WeakSet') item = itemref() if item is not None: return item def remove(self, item): if self._pending_removals: self._commit_removals() self.data.remove(ref(item)) def discard(self, item): if self._pending_removals: self._commit_removals() self.data.discard(ref(item)) def update(self, other): if self._pending_removals: self._commit_removals() if isinstance(other, self.__class__): self.data.update(other.data) else: for element in other: self.add(element) def __ior__(self, other): self.update(other) return self # Helper functions for simple delegating methods. def _apply(self, other, method): if not isinstance(other, self.__class__): other = self.__class__(other) newdata = method(other.data) newset = self.__class__() newset.data = newdata return newset def difference(self, other): return self._apply(other, self.data.difference) __sub__ = difference def difference_update(self, other): if self._pending_removals: self._commit_removals() if self is other: self.data.clear() else: self.data.difference_update(ref(item) for item in other) def __isub__(self, other): if self._pending_removals: self._commit_removals() if self is other: self.data.clear() else: self.data.difference_update(ref(item) for item in other) return self def intersection(self, other): return self._apply(other, self.data.intersection) __and__ = intersection def intersection_update(self, other): if self._pending_removals: self._commit_removals() self.data.intersection_update(ref(item) for item in other) def __iand__(self, other): if self._pending_removals: self._commit_removals() self.data.intersection_update(ref(item) for item in other) return self def issubset(self, other): return self.data.issubset(ref(item) for item in other) __lt__ = issubset def __le__(self, other): return self.data <= set(ref(item) for item in other) def issuperset(self, other): return self.data.issuperset(ref(item) for item in other) __gt__ = issuperset def __ge__(self, other): return self.data >= set(ref(item) for item in other) def __eq__(self, other): if not isinstance(other, self.__class__): return NotImplemented return self.data == set(ref(item) for item in other) def symmetric_difference(self, other): return self._apply(other, self.data.symmetric_difference) __xor__ = symmetric_difference def symmetric_difference_update(self, other): if self._pending_removals: self._commit_removals() if self is other: self.data.clear() else: self.data.symmetric_difference_update(ref(item) for item in other) def __ixor__(self, other): if self._pending_removals: self._commit_removals() if self is other: self.data.clear() else: self.data.symmetric_difference_update(ref(item) for item in other) return self def union(self, other): return self._apply(other, self.data.union) __or__ = union def isdisjoint(self, other): return len(self.intersection(other)) == 0
[docs]class SortedSet(object): ''' A sorted set based on sorted list A sorted set implementation is used in this case because it does not require its elements to be immutable/hashable. #Not implemented: update functions, inplace operators ''' def __init__(self, iterable=()): self._items = [] self.update(iterable) def __len__(self): return len(self._items) def __getitem__(self, i): return self._items[i] def __iter__(self): return iter(self._items) def __reversed__(self): return reversed(self._items) def __repr__(self): return '%s(%r)' % ( self.__class__.__name__, self._items) def __reduce__(self): return self.__class__, (self._items,) def __eq__(self, other): if isinstance(other, self.__class__): return self._items == other._items else: try: return len(other) == len(self._items) and all(item in self for item in other) except TypeError: return NotImplemented def __ne__(self, other): if isinstance(other, self.__class__): return self._items != other._items else: try: return len(other) != len(self._items) or any(item not in self for item in other) except TypeError: return NotImplemented def __le__(self, other): return self.issubset(other) def __lt__(self, other): return len(other) > len(self._items) and self.issubset(other) def __ge__(self, other): return self.issuperset(other) def __gt__(self, other): return len(self._items) > len(other) and self.issuperset(other) def __and__(self, other): return self._intersect(other) __rand__ = __and__ def __iand__(self, other): isect = self._intersect(other) self._items = isect._items return self def __or__(self, other): return self.union(other) __ror__ = __or__ def __ior__(self, other): union = self.union(other) self._items = union._items return self def __sub__(self, other): return self._diff(other) def __rsub__(self, other): return sortedset(other) - self def __isub__(self, other): diff = self._diff(other) self._items = diff._items return self def __xor__(self, other): return self.symmetric_difference(other) __rxor__ = __xor__ def __ixor__(self, other): sym_diff = self.symmetric_difference(other) self._items = sym_diff._items return self def __contains__(self, item): i = self._find_insertion(item) return i < len(self._items) and self._items[i] == item def __delitem__(self, i): del self._items[i] def __delslice__(self, i, j): del self._items[i:j] def add(self, item): i = self._find_insertion(item) if i < len(self._items): if self._items[i] != item: self._items.insert(i, item) else: self._items.append(item) def update(self, iterable): for i in iterable: self.add(i) def clear(self): del self._items[:] def copy(self): new = sortedset() new._items = list(self._items) return new def isdisjoint(self, other): return len(self._intersect(other)) == 0 def issubset(self, other): return len(self._intersect(other)) == len(self._items) def issuperset(self, other): return len(self._intersect(other)) == len(other) def pop(self): if not self._items: raise KeyError("pop from empty set") return self._items.pop() def remove(self, item): i = self._find_insertion(item) if i < len(self._items): if self._items[i] == item: self._items.pop(i) return raise KeyError('%r' % item) def union(self, *others): union = sortedset() union._items = list(self._items) for other in others: for item in other: union.add(item) return union def intersection(self, *others): isect = self.copy() for other in others: isect = isect._intersect(other) if not isect: break return isect def difference(self, *others): diff = self.copy() for other in others: diff = diff._diff(other) if not diff: break return diff def symmetric_difference(self, other): diff_self_other = self._diff(other) diff_other_self = other.difference(self) return diff_self_other.union(diff_other_self) def _diff(self, other): diff = sortedset() for item in self._items: if item not in other: diff.add(item) return diff def _intersect(self, other): isect = sortedset() for item in self._items: if item in other: isect.add(item) return isect def _find_insertion(self, x): # this uses bisect_left algorithm unless it has elements it can't compare, # in which case it defaults to grouping non-comparable items at the beginning or end, # and scanning sequentially to find an insertion point a = self._items lo = 0 hi = len(a) try: while lo < hi: mid = (lo + hi) // 2 if a[mid] < x: lo = mid + 1 else: hi = mid except TypeError: # could not compare a[mid] with x # start scanning to find insertion point while swallowing type errors lo = 0 compared_one = False # flag is used to determine whether uncomparables are grouped at the front or back while lo < hi: try: if a[lo] == x or a[lo] >= x: break compared_one = True except TypeError: if compared_one: break lo += 1 return lo
sortedset = SortedSet # backwards-compatibility from cassandra.compat import Mapping from six.moves import cPickle
[docs]class OrderedMap(Mapping): ''' An ordered map that accepts non-hashable types for keys. It also maintains the insertion order of items, behaving as OrderedDict in that regard. These maps are constructed and read just as normal mapping types, exept that they may contain arbitrary collections and other non-hashable items as keys:: >>> od = OrderedMap([({'one': 1, 'two': 2}, 'value'), ... ({'three': 3, 'four': 4}, 'value2')]) >>> list(od.keys()) [{'two': 2, 'one': 1}, {'three': 3, 'four': 4}] >>> list(od.values()) ['value', 'value2'] These constructs are needed to support nested collections in Cassandra 2.1.3+, where frozen collections can be specified as parameters to others:: CREATE TABLE example ( ... value map<frozen<map<int, int>>, double> ... ) This class derives from the (immutable) Mapping API. Objects in these maps are not intended be modified. ''' def __init__(self, *args, **kwargs): if len(args) > 1: raise TypeError('expected at most 1 arguments, got %d' % len(args)) self._items = [] self._index = {} if args: e = args[0] if callable(getattr(e, 'keys', None)): for k in e.keys(): self._insert(k, e[k]) else: for k, v in e: self._insert(k, v) for k, v in six.iteritems(kwargs): self._insert(k, v) def _insert(self, key, value): flat_key = self._serialize_key(key) i = self._index.get(flat_key, -1) if i >= 0: self._items[i] = (key, value) else: self._items.append((key, value)) self._index[flat_key] = len(self._items) - 1 __setitem__ = _insert def __getitem__(self, key): try: index = self._index[self._serialize_key(key)] return self._items[index][1] except KeyError: raise KeyError(str(key)) def __delitem__(self, key): # not efficient -- for convenience only try: index = self._index.pop(self._serialize_key(key)) self._index = dict((k, i if i < index else i - 1) for k, i in self._index.items()) self._items.pop(index) except KeyError: raise KeyError(str(key)) def __iter__(self): for i in self._items: yield i[0] def __len__(self): return len(self._items) def __eq__(self, other): if isinstance(other, OrderedMap): return self._items == other._items try: d = dict(other) return len(d) == len(self._items) and all(i[1] == d[i[0]] for i in self._items) except KeyError: return False except TypeError: pass return NotImplemented def __repr__(self): return '%s([%s])' % ( self.__class__.__name__, ', '.join("(%r, %r)" % (k, v) for k, v in self._items)) def __str__(self): return '{%s}' % ', '.join("%r: %r" % (k, v) for k, v in self._items) def popitem(self): try: kv = self._items.pop() del self._index[self._serialize_key(kv[0])] return kv except IndexError: raise KeyError() def _serialize_key(self, key): return cPickle.dumps(key)
[docs]class OrderedMapSerializedKey(OrderedMap): def __init__(self, cass_type, protocol_version): super(OrderedMapSerializedKey, self).__init__() self.cass_key_type = cass_type self.protocol_version = protocol_version def _insert_unchecked(self, key, flat_key, value): self._items.append((key, value)) self._index[flat_key] = len(self._items) - 1 def _serialize_key(self, key): return self.cass_key_type.serialize(key, self.protocol_version)
import datetime import time if six.PY3: long = int
[docs]@total_ordering class Time(object): ''' Idealized time, independent of day. Up to nanosecond resolution ''' MICRO = 1000 MILLI = 1000 * MICRO SECOND = 1000 * MILLI MINUTE = 60 * SECOND HOUR = 60 * MINUTE DAY = 24 * HOUR nanosecond_time = 0 def __init__(self, value): """ Initializer value can be: - integer_type: absolute nanoseconds in the day - datetime.time: built-in time - string_type: a string time of the form "HH:MM:SS[.mmmuuunnn]" """ if isinstance(value, six.integer_types): self._from_timestamp(value) elif isinstance(value, datetime.time): self._from_time(value) elif isinstance(value, six.string_types): self._from_timestring(value) else: raise TypeError('Time arguments must be a whole number, datetime.time, or string') @property def hour(self): """ The hour component of this time (0-23) """ return self.nanosecond_time // Time.HOUR @property def minute(self): """ The minute component of this time (0-59) """ minutes = self.nanosecond_time // Time.MINUTE return minutes % 60 @property def second(self): """ The second component of this time (0-59) """ seconds = self.nanosecond_time // Time.SECOND return seconds % 60 @property def nanosecond(self): """ The fractional seconds component of the time, in nanoseconds """ return self.nanosecond_time % Time.SECOND
[docs] def time(self): """ Return a built-in datetime.time (nanosecond precision truncated to micros). """ return datetime.time(hour=self.hour, minute=self.minute, second=self.second, microsecond=self.nanosecond // Time.MICRO)
def _from_timestamp(self, t): if t >= Time.DAY: raise ValueError("value must be less than number of nanoseconds in a day (%d)" % Time.DAY) self.nanosecond_time = t def _from_timestring(self, s): try: parts = s.split('.') base_time = time.strptime(parts[0], "%H:%M:%S") self.nanosecond_time = (base_time.tm_hour * Time.HOUR + base_time.tm_min * Time.MINUTE + base_time.tm_sec * Time.SECOND) if len(parts) > 1: # right pad to 9 digits nano_time_str = parts[1] + "0" * (9 - len(parts[1])) self.nanosecond_time += int(nano_time_str) except ValueError: raise ValueError("can't interpret %r as a time" % (s,)) def _from_time(self, t): self.nanosecond_time = (t.hour * Time.HOUR + t.minute * Time.MINUTE + t.second * Time.SECOND + t.microsecond * Time.MICRO) def __hash__(self): return self.nanosecond_time def __eq__(self, other): if isinstance(other, Time): return self.nanosecond_time == other.nanosecond_time if isinstance(other, six.integer_types): return self.nanosecond_time == other return self.nanosecond_time % Time.MICRO == 0 and \ datetime.time(hour=self.hour, minute=self.minute, second=self.second, microsecond=self.nanosecond // Time.MICRO) == other def __ne__(self, other): return not self.__eq__(other) def __lt__(self, other): if not isinstance(other, Time): return NotImplemented return self.nanosecond_time < other.nanosecond_time def __repr__(self): return "Time(%s)" % self.nanosecond_time def __str__(self): return "%02d:%02d:%02d.%09d" % (self.hour, self.minute, self.second, self.nanosecond)
[docs]@total_ordering class Date(object): ''' Idealized date: year, month, day Offers wider year range than datetime.date. For Dates that cannot be represented as a datetime.date (because datetime.MINYEAR, datetime.MAXYEAR), this type falls back to printing days_from_epoch offset. ''' MINUTE = 60 HOUR = 60 * MINUTE DAY = 24 * HOUR date_format = "%Y-%m-%d" days_from_epoch = 0 def __init__(self, value): """ Initializer value can be: - integer_type: absolute days from epoch (1970, 1, 1). Can be negative. - datetime.date: built-in date - string_type: a string time of the form "yyyy-mm-dd" """ if isinstance(value, six.integer_types): self.days_from_epoch = value elif isinstance(value, (datetime.date, datetime.datetime)): self._from_timetuple(value.timetuple()) elif isinstance(value, six.string_types): self._from_datestring(value) else: raise TypeError('Date arguments must be a whole number, datetime.date, or string') @property def seconds(self): """ Absolute seconds from epoch (can be negative) """ return self.days_from_epoch * Date.DAY
[docs] def date(self): """ Return a built-in datetime.date for Dates falling in the years [datetime.MINYEAR, datetime.MAXYEAR] ValueError is raised for Dates outside this range. """ try: dt = datetime_from_timestamp(self.seconds) return datetime.date(dt.year, dt.month, dt.day) except Exception: raise ValueError("%r exceeds ranges for built-in datetime.date" % self)
def _from_timetuple(self, t): self.days_from_epoch = calendar.timegm(t) // Date.DAY def _from_datestring(self, s): if s[0] == '+': s = s[1:] dt = datetime.datetime.strptime(s, self.date_format) self._from_timetuple(dt.timetuple()) def __hash__(self): return self.days_from_epoch def __eq__(self, other): if isinstance(other, Date): return self.days_from_epoch == other.days_from_epoch if isinstance(other, six.integer_types): return self.days_from_epoch == other try: return self.date() == other except Exception: return False def __ne__(self, other): return not self.__eq__(other) def __lt__(self, other): if not isinstance(other, Date): return NotImplemented return self.days_from_epoch < other.days_from_epoch def __repr__(self): return "Date(%s)" % self.days_from_epoch def __str__(self): try: dt = datetime_from_timestamp(self.seconds) return "%04d-%02d-%02d" % (dt.year, dt.month, dt.day) except: # If we overflow datetime.[MIN|MAX] return str(self.days_from_epoch)
import socket if hasattr(socket, 'inet_pton'): inet_pton = socket.inet_pton inet_ntop = socket.inet_ntop else: """ Windows doesn't have socket.inet_pton and socket.inet_ntop until Python 3.4 This is an alternative impl using ctypes, based on this win_inet_pton project: https://github.com/hickeroar/win_inet_pton """ import ctypes class sockaddr(ctypes.Structure): """ Shared struct for ipv4 and ipv6. https://msdn.microsoft.com/en-us/library/windows/desktop/ms740496(v=vs.85).aspx ``__pad1`` always covers the port. When being used for ``sockaddr_in6``, ``ipv4_addr`` actually covers ``sin6_flowinfo``, resulting in proper alignment for ``ipv6_addr``. """ _fields_ = [("sa_family", ctypes.c_short), ("__pad1", ctypes.c_ushort), ("ipv4_addr", ctypes.c_byte * 4), ("ipv6_addr", ctypes.c_byte * 16), ("__pad2", ctypes.c_ulong)] if hasattr(ctypes, 'windll'): WSAStringToAddressA = ctypes.windll.ws2_32.WSAStringToAddressA WSAAddressToStringA = ctypes.windll.ws2_32.WSAAddressToStringA else: def not_windows(*args): raise OSError("IPv6 addresses cannot be handled on Windows. " "Missing ctypes.windll") WSAStringToAddressA = not_windows WSAAddressToStringA = not_windows def inet_pton(address_family, ip_string): if address_family == socket.AF_INET: return socket.inet_aton(ip_string) addr = sockaddr() addr.sa_family = address_family addr_size = ctypes.c_int(ctypes.sizeof(addr)) if WSAStringToAddressA( ip_string, address_family, None, ctypes.byref(addr), ctypes.byref(addr_size) ) != 0: raise socket.error(ctypes.FormatError()) if address_family == socket.AF_INET6: return ctypes.string_at(addr.ipv6_addr, 16) raise socket.error('unknown address family') def inet_ntop(address_family, packed_ip): if address_family == socket.AF_INET: return socket.inet_ntoa(packed_ip) addr = sockaddr() addr.sa_family = address_family addr_size = ctypes.c_int(ctypes.sizeof(addr)) ip_string = ctypes.create_string_buffer(128) ip_string_size = ctypes.c_int(ctypes.sizeof(ip_string)) if address_family == socket.AF_INET6: if len(packed_ip) != ctypes.sizeof(addr.ipv6_addr): raise socket.error('packed IP wrong length for inet_ntoa') ctypes.memmove(addr.ipv6_addr, packed_ip, 16) else: raise socket.error('unknown address family') if WSAAddressToStringA( ctypes.byref(addr), addr_size, None, ip_string, ctypes.byref(ip_string_size) ) != 0: raise socket.error(ctypes.FormatError()) return ip_string[:ip_string_size.value - 1] import keyword # similar to collections.namedtuple, reproduced here because Python 2.6 did not have the rename logic def _positional_rename_invalid_identifiers(field_names): names_out = list(field_names) for index, name in enumerate(field_names): if (not all(c.isalnum() or c == '_' for c in name) or keyword.iskeyword(name) or not name or name[0].isdigit() or name.startswith('_')): names_out[index] = 'field_%d_' % index return names_out def _sanitize_identifiers(field_names): names_out = _positional_rename_invalid_identifiers(field_names) if len(names_out) != len(set(names_out)): observed_names = set() for index, name in enumerate(names_out): while names_out[index] in observed_names: names_out[index] = "%s_" % (names_out[index],) observed_names.add(names_out[index]) return names_out def list_contents_to_tuple(to_convert): if isinstance(to_convert, list): for n, i in enumerate(to_convert): if isinstance(to_convert[n], list): to_convert[n] = tuple(to_convert[n]) return tuple(to_convert) else: return to_convert
[docs]class Point(object): """ Represents a point geometry for DSE """ x = None """ x coordinate of the point """ y = None """ y coordinate of the point """ def __init__(self, x=_nan, y=_nan): self.x = x self.y = y def __eq__(self, other): return isinstance(other, Point) and self.x == other.x and self.y == other.y def __hash__(self): return hash((self.x, self.y)) def __str__(self): """ Well-known text representation of the point """ return "POINT (%r %r)" % (self.x, self.y) def __repr__(self): return "%s(%r, %r)" % (self.__class__.__name__, self.x, self.y)
[docs] @staticmethod def from_wkt(s): """ Parse a Point geometry from a wkt string and return a new Point object. """ if not _HAS_GEOMET: raise DriverException("Geomet is required to deserialize a wkt geometry.") try: geom = wkt.loads(s) except ValueError: raise ValueError("Invalid WKT geometry: '{0}'".format(s)) if geom['type'] != 'Point': raise ValueError("Invalid WKT geometry type. Expected 'Point', got '{0}': '{1}'".format(geom['type'], s)) coords = geom['coordinates'] if len(coords) < 2: x = y = _nan else: x = coords[0] y = coords[1] return Point(x=x, y=y)
[docs]class LineString(object): """ Represents a linestring geometry for DSE """ coords = None """ Tuple of (x, y) coordinates in the linestring """ def __init__(self, coords=tuple()): """ 'coords`: a sequence of (x, y) coordinates of points in the linestring """ self.coords = tuple(coords) def __eq__(self, other): return isinstance(other, LineString) and self.coords == other.coords def __hash__(self): return hash(self.coords) def __str__(self): """ Well-known text representation of the LineString """ if not self.coords: return "LINESTRING EMPTY" return "LINESTRING (%s)" % ', '.join("%r %r" % (x, y) for x, y in self.coords) def __repr__(self): return "%s(%r)" % (self.__class__.__name__, self.coords)
[docs] @staticmethod def from_wkt(s): """ Parse a LineString geometry from a wkt string and return a new LineString object. """ if not _HAS_GEOMET: raise DriverException("Geomet is required to deserialize a wkt geometry.") try: geom = wkt.loads(s) except ValueError: raise ValueError("Invalid WKT geometry: '{0}'".format(s)) if geom['type'] != 'LineString': raise ValueError("Invalid WKT geometry type. Expected 'LineString', got '{0}': '{1}'".format(geom['type'], s)) geom['coordinates'] = list_contents_to_tuple(geom['coordinates']) return LineString(coords=geom['coordinates'])
class _LinearRing(object): # no validation, no implicit closing; just used for poly composition, to # mimic that of shapely.geometry.Polygon def __init__(self, coords=tuple()): self.coords = list_contents_to_tuple(coords) def __eq__(self, other): return isinstance(other, _LinearRing) and self.coords == other.coords def __hash__(self): return hash(self.coords) def __str__(self): if not self.coords: return "LINEARRING EMPTY" return "LINEARRING (%s)" % ', '.join("%r %r" % (x, y) for x, y in self.coords) def __repr__(self): return "%s(%r)" % (self.__class__.__name__, self.coords)
[docs]class Polygon(object): """ Represents a polygon geometry for DSE """ exterior = None """ _LinearRing representing the exterior of the polygon """ interiors = None """ Tuple of _LinearRings representing interior holes in the polygon """ def __init__(self, exterior=tuple(), interiors=None): """ 'exterior`: a sequence of (x, y) coordinates of points in the linestring `interiors`: None, or a sequence of sequences or (x, y) coordinates of points describing interior linear rings """ self.exterior = _LinearRing(exterior) self.interiors = tuple(_LinearRing(e) for e in interiors) if interiors else tuple() def __eq__(self, other): return isinstance(other, Polygon) and self.exterior == other.exterior and self.interiors == other.interiors def __hash__(self): return hash((self.exterior, self.interiors)) def __str__(self): """ Well-known text representation of the polygon """ if not self.exterior.coords: return "POLYGON EMPTY" rings = [ring.coords for ring in chain((self.exterior,), self.interiors)] rings = ["(%s)" % ', '.join("%r %r" % (x, y) for x, y in ring) for ring in rings] return "POLYGON (%s)" % ', '.join(rings) def __repr__(self): return "%s(%r, %r)" % (self.__class__.__name__, self.exterior.coords, [ring.coords for ring in self.interiors])
[docs] @staticmethod def from_wkt(s): """ Parse a Polygon geometry from a wkt string and return a new Polygon object. """ if not _HAS_GEOMET: raise DriverException("Geomet is required to deserialize a wkt geometry.") try: geom = wkt.loads(s) except ValueError: raise ValueError("Invalid WKT geometry: '{0}'".format(s)) if geom['type'] != 'Polygon': raise ValueError("Invalid WKT geometry type. Expected 'Polygon', got '{0}': '{1}'".format(geom['type'], s)) coords = geom['coordinates'] exterior = coords[0] if len(coords) > 0 else tuple() interiors = coords[1:] if len(coords) > 1 else None return Polygon(exterior=exterior, interiors=interiors)
_distance_wkt_pattern = re.compile("distance *\\( *\\( *([\\d\\.-]+) *([\\d+\\.-]+) *\\) *([\\d+\\.-]+) *\\) *$", re.IGNORECASE)
[docs]class Distance(object): """ Represents a Distance geometry for DSE """ x = None """ x coordinate of the center point """ y = None """ y coordinate of the center point """ radius = None """ radius to represent the distance from the center point """ def __init__(self, x=_nan, y=_nan, radius=_nan): self.x = x self.y = y self.radius = radius def __eq__(self, other): return isinstance(other, Distance) and self.x == other.x and self.y == other.y and self.radius == other.radius def __hash__(self): return hash((self.x, self.y, self.radius)) def __str__(self): """ Well-known text representation of the point """ return "DISTANCE ((%r %r) %r)" % (self.x, self.y, self.radius) def __repr__(self): return "%s(%r, %r, %r)" % (self.__class__.__name__, self.x, self.y, self.radius)
[docs] @staticmethod def from_wkt(s): """ Parse a Distance geometry from a wkt string and return a new Distance object. """ distance_match = _distance_wkt_pattern.match(s) if distance_match is None: raise ValueError("Invalid WKT geometry: '{0}'".format(s)) x, y, radius = distance_match.groups() return Distance(x, y, radius)
[docs]class Duration(object): """ Cassandra Duration Type """ months = 0 days = 0 nanoseconds = 0 def __init__(self, months=0, days=0, nanoseconds=0): self.months = months self.days = days self.nanoseconds = nanoseconds def __eq__(self, other): return isinstance(other, self.__class__) and self.months == other.months and self.days == other.days and self.nanoseconds == other.nanoseconds def __repr__(self): return "Duration({0}, {1}, {2})".format(self.months, self.days, self.nanoseconds) def __str__(self): has_negative_values = self.months < 0 or self.days < 0 or self.nanoseconds < 0 return '%s%dmo%dd%dns' % ( '-' if has_negative_values else '', abs(self.months), abs(self.days), abs(self.nanoseconds) )
[docs]class DateRangePrecision(object): """ An "enum" representing the valid values for :attr:`DateRange.precision`. """ YEAR = 'YEAR' """ """ MONTH = 'MONTH' """ """ DAY = 'DAY' """ """ HOUR = 'HOUR' """ """ MINUTE = 'MINUTE' """ """ SECOND = 'SECOND' """ """ MILLISECOND = 'MILLISECOND' """ """ PRECISIONS = (YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, MILLISECOND) """ """ @classmethod def _to_int(cls, precision): return cls.PRECISIONS.index(precision.upper()) @classmethod def _round_to_precision(cls, ms, precision, default_dt): try: dt = utc_datetime_from_ms_timestamp(ms) except OverflowError: return ms precision_idx = cls._to_int(precision) replace_kwargs = {} if precision_idx <= cls._to_int(DateRangePrecision.YEAR): replace_kwargs['month'] = default_dt.month if precision_idx <= cls._to_int(DateRangePrecision.MONTH): replace_kwargs['day'] = default_dt.day if precision_idx <= cls._to_int(DateRangePrecision.DAY): replace_kwargs['hour'] = default_dt.hour if precision_idx <= cls._to_int(DateRangePrecision.HOUR): replace_kwargs['minute'] = default_dt.minute if precision_idx <= cls._to_int(DateRangePrecision.MINUTE): replace_kwargs['second'] = default_dt.second if precision_idx <= cls._to_int(DateRangePrecision.SECOND): # truncate to nearest 1000 so we deal in ms, not us replace_kwargs['microsecond'] = (default_dt.microsecond // 1000) * 1000 if precision_idx == cls._to_int(DateRangePrecision.MILLISECOND): replace_kwargs['microsecond'] = int(round(dt.microsecond, -3)) return ms_timestamp_from_datetime(dt.replace(**replace_kwargs)) @classmethod def round_up_to_precision(cls, ms, precision): # PYTHON-912: this is the only case in which we can't take as upper bound # datetime.datetime.max because the month from ms may be February and we'd # be setting 31 as the month day if precision == cls.MONTH: date_ms = utc_datetime_from_ms_timestamp(ms) upper_date = datetime.datetime.max.replace(year=date_ms.year, month=date_ms.month, day=calendar.monthrange(date_ms.year, date_ms.month)[1]) else: upper_date = datetime.datetime.max return cls._round_to_precision(ms, precision, upper_date) @classmethod def round_down_to_precision(cls, ms, precision): return cls._round_to_precision(ms, precision, datetime.datetime.min)
[docs]@total_ordering class DateRangeBound(object): """DateRangeBound(value, precision) Represents a single date value and its precision for :class:`DateRange`. .. attribute:: milliseconds Integer representing milliseconds since the UNIX epoch. May be negative. .. attribute:: precision String representing the precision of a bound. Must be a valid :class:`DateRangePrecision` member. :class:`DateRangeBound` uses a millisecond offset from the UNIX epoch to allow :class:`DateRange` to represent values `datetime.datetime` cannot. For such values, string representions will show this offset rather than the CQL representation. """ milliseconds = None precision = None def __init__(self, value, precision): """ :param value: a value representing ms since the epoch. Accepts an integer or a datetime. :param precision: a string representing precision """ if precision is not None: try: self.precision = precision.upper() except AttributeError: raise TypeError('precision must be a string; got %r' % precision) if value is None: milliseconds = None elif isinstance(value, six.integer_types): milliseconds = value elif isinstance(value, datetime.datetime): value = value.replace( microsecond=int(round(value.microsecond, -3)) ) milliseconds = ms_timestamp_from_datetime(value) else: raise ValueError('%r is not a valid value for DateRangeBound' % value) self.milliseconds = milliseconds self.validate() def __eq__(self, other): if not isinstance(other, self.__class__): return NotImplemented return (self.milliseconds == other.milliseconds and self.precision == other.precision) def __lt__(self, other): return ((str(self.milliseconds), str(self.precision)) < (str(other.milliseconds), str(other.precision)))
[docs] def datetime(self): """ Return :attr:`milliseconds` as a :class:`datetime.datetime` if possible. Raises an `OverflowError` if the value is out of range. """ return utc_datetime_from_ms_timestamp(self.milliseconds)
def validate(self): attrs = self.milliseconds, self.precision if attrs == (None, None): return if None in attrs: raise TypeError( ("%s.datetime and %s.precision must not be None unless both " "are None; Got: %r") % (self.__class__.__name__, self.__class__.__name__, self) ) if self.precision not in DateRangePrecision.PRECISIONS: raise ValueError( "%s.precision: expected value in %r; got %r" % ( self.__class__.__name__, DateRangePrecision.PRECISIONS, self.precision ) )
[docs] @classmethod def from_value(cls, value): """ Construct a new :class:`DateRangeBound` from a given value. If possible, use the `value['milliseconds']` and `value['precision']` keys of the argument. Otherwise, use the argument as a `(milliseconds, precision)` iterable. :param value: a dictlike or iterable object """ if isinstance(value, cls): return value # if possible, use as a mapping try: milliseconds, precision = value.get('milliseconds'), value.get('precision') except AttributeError: milliseconds = precision = None if milliseconds is not None and precision is not None: return DateRangeBound(value=milliseconds, precision=precision) # otherwise, use as an iterable return DateRangeBound(*value)
def round_up(self): if self.milliseconds is None or self.precision is None: return self self.milliseconds = DateRangePrecision.round_up_to_precision( self.milliseconds, self.precision ) return self def round_down(self): if self.milliseconds is None or self.precision is None: return self self.milliseconds = DateRangePrecision.round_down_to_precision( self.milliseconds, self.precision ) return self _formatter_map = { DateRangePrecision.YEAR: '%Y', DateRangePrecision.MONTH: '%Y-%m', DateRangePrecision.DAY: '%Y-%m-%d', DateRangePrecision.HOUR: '%Y-%m-%dT%HZ', DateRangePrecision.MINUTE: '%Y-%m-%dT%H:%MZ', DateRangePrecision.SECOND: '%Y-%m-%dT%H:%M:%SZ', DateRangePrecision.MILLISECOND: '%Y-%m-%dT%H:%M:%S', } def __str__(self): if self == OPEN_BOUND: return '*' try: dt = self.datetime() except OverflowError: return '%sms' % (self.milliseconds,) formatted = dt.strftime(self._formatter_map[self.precision]) if self.precision == DateRangePrecision.MILLISECOND: # we'd like to just format with '%Y-%m-%dT%H:%M:%S.%fZ', but %f # gives us more precision than we want, so we strftime up to %S and # do the rest ourselves return '%s.%03dZ' % (formatted, dt.microsecond / 1000) return formatted def __repr__(self): return '%s(milliseconds=%r, precision=%r)' % ( self.__class__.__name__, self.milliseconds, self.precision )
OPEN_BOUND = DateRangeBound(value=None, precision=None) """ Represents `*`, an open value or bound for :class:`DateRange`. """
[docs]@total_ordering class DateRange(object): """DateRange(lower_bound=None, upper_bound=None, value=None) DSE DateRange Type .. attribute:: lower_bound :class:`~DateRangeBound` representing the lower bound of a bounded range. .. attribute:: upper_bound :class:`~DateRangeBound` representing the upper bound of a bounded range. .. attribute:: value :class:`~DateRangeBound` representing the value of a single-value range. As noted in its documentation, :class:`DateRangeBound` uses a millisecond offset from the UNIX epoch to allow :class:`DateRange` to represent values `datetime.datetime` cannot. For such values, string representions will show this offset rather than the CQL representation. """ lower_bound = None upper_bound = None value = None def __init__(self, lower_bound=None, upper_bound=None, value=None): """ :param lower_bound: a :class:`DateRangeBound` or object accepted by :meth:`DateRangeBound.from_value` to be used as a :attr:`lower_bound`. Mutually exclusive with `value`. If `upper_bound` is specified and this is not, the :attr:`lower_bound` will be open. :param upper_bound: a :class:`DateRangeBound` or object accepted by :meth:`DateRangeBound.from_value` to be used as a :attr:`upper_bound`. Mutually exclusive with `value`. If `lower_bound` is specified and this is not, the :attr:`upper_bound` will be open. :param value: a :class:`DateRangeBound` or object accepted by :meth:`DateRangeBound.from_value` to be used as :attr:`value`. Mutually exclusive with `lower_bound` and `lower_bound`. """ # if necessary, transform non-None args to DateRangeBounds lower_bound = (DateRangeBound.from_value(lower_bound).round_down() if lower_bound else lower_bound) upper_bound = (DateRangeBound.from_value(upper_bound).round_up() if upper_bound else upper_bound) value = (DateRangeBound.from_value(value).round_down() if value else value) # if we're using a 2-ended range but one bound isn't specified, specify # an open bound if lower_bound is None and upper_bound is not None: lower_bound = OPEN_BOUND if upper_bound is None and lower_bound is not None: upper_bound = OPEN_BOUND self.lower_bound, self.upper_bound, self.value = ( lower_bound, upper_bound, value ) self.validate() def validate(self): if self.value is None: if self.lower_bound is None or self.upper_bound is None: raise ValueError( '%s instances where value attribute is None must set ' 'lower_bound or upper_bound; got %r' % ( self.__class__.__name__, self ) ) else: # self.value is not None if self.lower_bound is not None or self.upper_bound is not None: raise ValueError( '%s instances where value attribute is not None must not ' 'set lower_bound or upper_bound; got %r' % ( self.__class__.__name__, self ) ) def __eq__(self, other): if not isinstance(other, self.__class__): return NotImplemented return (self.lower_bound == other.lower_bound and self.upper_bound == other.upper_bound and self.value == other.value) def __lt__(self, other): return ((str(self.lower_bound), str(self.upper_bound), str(self.value)) < (str(other.lower_bound), str(other.upper_bound), str(other.value))) def __str__(self): if self.value: return str(self.value) else: return '[%s TO %s]' % (self.lower_bound, self.upper_bound) def __repr__(self): return '%s(lower_bound=%r, upper_bound=%r, value=%r)' % ( self.__class__.__name__, self.lower_bound, self.upper_bound, self.value )
[docs]@total_ordering class Version(object): """ Internal minimalist class to compare versions. A valid version is: <int>.<int>.<int>.<int or str>. TODO: when python2 support is removed, use packaging.version. """ _version = None major = None minor = 0 patch = 0 build = 0 prerelease = 0 def __init__(self, version): self._version = version if '-' in version: version_without_prerelease, self.prerelease = version.split('-', 1) else: version_without_prerelease = version parts = list(reversed(version_without_prerelease.split('.'))) if len(parts) > 4: prerelease_string = "-{}".format(self.prerelease) if self.prerelease else "" log.warning("Unrecognized version: {}. Only 4 components plus prerelease are supported. " "Assuming version as {}{}".format(version, '.'.join(parts[:-5:-1]), prerelease_string)) try: self.major = int(parts.pop()) except ValueError: six.reraise( ValueError, ValueError("Couldn't parse version {}. Version should start with a number".format(version)), sys.exc_info()[2] ) try: self.minor = int(parts.pop()) if parts else 0 self.patch = int(parts.pop()) if parts else 0 if parts: # we have a build version build = parts.pop() try: self.build = int(build) except ValueError: self.build = build except ValueError: assumed_version = "{}.{}.{}.{}-{}".format(self.major, self.minor, self.patch, self.build, self.prerelease) log.warning("Unrecognized version {}. Assuming version as {}".format(version, assumed_version)) def __hash__(self): return self._version def __repr__(self): version_string = "Version({0}, {1}, {2}".format(self.major, self.minor, self.patch) if self.build: version_string += ", {}".format(self.build) if self.prerelease: version_string += ", {}".format(self.prerelease) version_string += ")" return version_string def __str__(self): return self._version @staticmethod def _compare_version_part(version, other_version, cmp): if not (isinstance(version, six.integer_types) and isinstance(other_version, six.integer_types)): version = str(version) other_version = str(other_version) return cmp(version, other_version) def __eq__(self, other): if not isinstance(other, Version): return NotImplemented return (self.major == other.major and self.minor == other.minor and self.patch == other.patch and self._compare_version_part(self.build, other.build, lambda s, o: s == o) and self._compare_version_part(self.prerelease, other.prerelease, lambda s, o: s == o) ) def __gt__(self, other): if not isinstance(other, Version): return NotImplemented is_major_ge = self.major >= other.major is_minor_ge = self.minor >= other.minor is_patch_ge = self.patch >= other.patch is_build_gt = self._compare_version_part(self.build, other.build, lambda s, o: s > o) is_build_ge = self._compare_version_part(self.build, other.build, lambda s, o: s >= o) # By definition, a prerelease comes BEFORE the actual release, so if a version # doesn't have a prerelease, it's automatically greater than anything that does if self.prerelease and not other.prerelease: is_prerelease_gt = False elif other.prerelease and not self.prerelease: is_prerelease_gt = True else: is_prerelease_gt = self._compare_version_part(self.prerelease, other.prerelease, lambda s, o: s > o) \ return (self.major > other.major or (is_major_ge and self.minor > other.minor) or (is_major_ge and is_minor_ge and self.patch > other.patch) or (is_major_ge and is_minor_ge and is_patch_ge and is_build_gt) or (is_major_ge and is_minor_ge and is_patch_ge and is_build_ge and is_prerelease_gt) )