# Copyright DataStax, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import with_statement
import calendar
import datetime
from functools import total_ordering
import logging
from itertools import chain
import random
import re
import six
import uuid
import sys
_HAS_GEOMET = True
try:
from geomet import wkt
except:
_HAS_GEOMET = False
from cassandra import DriverException
DATETIME_EPOC = datetime.datetime(1970, 1, 1)
UTC_DATETIME_EPOC = datetime.datetime.utcfromtimestamp(0)
_nan = float('nan')
log = logging.getLogger(__name__)
assert sys.byteorder in ('little', 'big')
is_little_endian = sys.byteorder == 'little'
[docs]def datetime_from_timestamp(timestamp):
"""
Creates a timezone-agnostic datetime from timestamp (in seconds) in a consistent manner.
Works around a Windows issue with large negative timestamps (PYTHON-119),
and rounding differences in Python 3.4 (PYTHON-340).
:param timestamp: a unix timestamp, in seconds
"""
dt = DATETIME_EPOC + datetime.timedelta(seconds=timestamp)
return dt
[docs]def utc_datetime_from_ms_timestamp(timestamp):
"""
Creates a UTC datetime from a timestamp in milliseconds. See
:meth:`datetime_from_timestamp`.
Raises an `OverflowError` if the timestamp is out of range for
:class:`~datetime.datetime`.
:param timestamp: timestamp, in milliseconds
"""
return UTC_DATETIME_EPOC + datetime.timedelta(milliseconds=timestamp)
[docs]def ms_timestamp_from_datetime(dt):
"""
Converts a datetime to a timestamp expressed in milliseconds.
:param dt: a :class:`datetime.datetime`
"""
return int(round((dt - UTC_DATETIME_EPOC).total_seconds() * 1000))
[docs]def unix_time_from_uuid1(uuid_arg):
"""
Converts a version 1 :class:`uuid.UUID` to a timestamp with the same precision
as :meth:`time.time()` returns. This is useful for examining the
results of queries returning a v1 :class:`~uuid.UUID`.
:param uuid_arg: a version 1 :class:`~uuid.UUID`
"""
return (uuid_arg.time - 0x01B21DD213814000) / 1e7
[docs]def datetime_from_uuid1(uuid_arg):
"""
Creates a timezone-agnostic datetime from the timestamp in the
specified type-1 UUID.
:param uuid_arg: a version 1 :class:`~uuid.UUID`
"""
return datetime_from_timestamp(unix_time_from_uuid1(uuid_arg))
[docs]def min_uuid_from_time(timestamp):
"""
Generates the minimum TimeUUID (type 1) for a given timestamp, as compared by Cassandra.
See :func:`uuid_from_time` for argument and return types.
"""
return uuid_from_time(timestamp, 0x808080808080, 0x80) # Cassandra does byte-wise comparison; fill with min signed bytes (0x80 = -128)
[docs]def max_uuid_from_time(timestamp):
"""
Generates the maximum TimeUUID (type 1) for a given timestamp, as compared by Cassandra.
See :func:`uuid_from_time` for argument and return types.
"""
return uuid_from_time(timestamp, 0x7f7f7f7f7f7f, 0x3f7f) # Max signed bytes (0x7f = 127)
[docs]def uuid_from_time(time_arg, node=None, clock_seq=None):
"""
Converts a datetime or timestamp to a type 1 :class:`uuid.UUID`.
:param time_arg:
The time to use for the timestamp portion of the UUID.
This can either be a :class:`datetime` object or a timestamp
in seconds (as returned from :meth:`time.time()`).
:type datetime: :class:`datetime` or timestamp
:param node:
None integer for the UUID (up to 48 bits). If not specified, this
field is randomized.
:type node: long
:param clock_seq:
Clock sequence field for the UUID (up to 14 bits). If not specified,
a random sequence is generated.
:type clock_seq: int
:rtype: :class:`uuid.UUID`
"""
if hasattr(time_arg, 'utctimetuple'):
seconds = int(calendar.timegm(time_arg.utctimetuple()))
microseconds = (seconds * 1e6) + time_arg.time().microsecond
else:
microseconds = int(time_arg * 1e6)
# 0x01b21dd213814000 is the number of 100-ns intervals between the
# UUID epoch 1582-10-15 00:00:00 and the Unix epoch 1970-01-01 00:00:00.
intervals = int(microseconds * 10) + 0x01b21dd213814000
time_low = intervals & 0xffffffff
time_mid = (intervals >> 32) & 0xffff
time_hi_version = (intervals >> 48) & 0x0fff
if clock_seq is None:
clock_seq = random.getrandbits(14)
else:
if clock_seq > 0x3fff:
raise ValueError('clock_seq is out of range (need a 14-bit value)')
clock_seq_low = clock_seq & 0xff
clock_seq_hi_variant = 0x80 | ((clock_seq >> 8) & 0x3f)
if node is None:
node = random.getrandbits(48)
return uuid.UUID(fields=(time_low, time_mid, time_hi_version,
clock_seq_hi_variant, clock_seq_low, node), version=1)
LOWEST_TIME_UUID = uuid.UUID('00000000-0000-1000-8080-808080808080')
""" The lowest possible TimeUUID, as sorted by Cassandra. """
HIGHEST_TIME_UUID = uuid.UUID('ffffffff-ffff-1fff-bf7f-7f7f7f7f7f7f')
""" The highest possible TimeUUID, as sorted by Cassandra. """
def _addrinfo_or_none(contact_point, port):
"""
A helper function that wraps socket.getaddrinfo and returns None
when it fails to, e.g. resolve one of the hostnames. Used to address
PYTHON-895.
"""
try:
value = socket.getaddrinfo(contact_point, port,
socket.AF_UNSPEC, socket.SOCK_STREAM)
return value
except socket.gaierror:
log.debug('Could not resolve hostname "{}" '
'with port {}'.format(contact_point, port))
return None
def _addrinfo_to_ip_strings(addrinfo):
"""
Helper function that consumes the data output by socket.getaddrinfo and
extracts the IP address from the sockaddr portion of the result.
Since this is meant to be used in conjunction with _addrinfo_or_none,
this will pass None and EndPoint instances through unaffected.
"""
if addrinfo is None:
return None
return [(entry[4][0], entry[4][1]) for entry in addrinfo]
def _resolve_contact_points_to_string_map(contact_points):
return OrderedDict(
('{cp}:{port}'.format(cp=cp, port=port), _addrinfo_to_ip_strings(_addrinfo_or_none(cp, port)))
for cp, port in contact_points
)
try:
from collections import OrderedDict
except ImportError:
# OrderedDict from Python 2.7+
# Copyright (c) 2009 Raymond Hettinger
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
# OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
# OTHER DEALINGS IN THE SOFTWARE.
from UserDict import DictMixin
class OrderedDict(dict, DictMixin): # noqa
""" A dictionary which maintains the insertion order of keys. """
def __init__(self, *args, **kwds):
""" A dictionary which maintains the insertion order of keys. """
if len(args) > 1:
raise TypeError('expected at most 1 arguments, got %d' % len(args))
try:
self.__end
except AttributeError:
self.clear()
self.update(*args, **kwds)
def clear(self):
self.__end = end = []
end += [None, end, end] # sentinel node for doubly linked list
self.__map = {} # key --> [key, prev, next]
dict.clear(self)
def __setitem__(self, key, value):
if key not in self:
end = self.__end
curr = end[1]
curr[2] = end[1] = self.__map[key] = [key, curr, end]
dict.__setitem__(self, key, value)
def __delitem__(self, key):
dict.__delitem__(self, key)
key, prev, next = self.__map.pop(key)
prev[2] = next
next[1] = prev
def __iter__(self):
end = self.__end
curr = end[2]
while curr is not end:
yield curr[0]
curr = curr[2]
def __reversed__(self):
end = self.__end
curr = end[1]
while curr is not end:
yield curr[0]
curr = curr[1]
def popitem(self, last=True):
if not self:
raise KeyError('dictionary is empty')
if last:
key = next(reversed(self))
else:
key = next(iter(self))
value = self.pop(key)
return key, value
def __reduce__(self):
items = [[k, self[k]] for k in self]
tmp = self.__map, self.__end
del self.__map, self.__end
inst_dict = vars(self).copy()
self.__map, self.__end = tmp
if inst_dict:
return (self.__class__, (items,), inst_dict)
return self.__class__, (items,)
def keys(self):
return list(self)
setdefault = DictMixin.setdefault
update = DictMixin.update
pop = DictMixin.pop
values = DictMixin.values
items = DictMixin.items
iterkeys = DictMixin.iterkeys
itervalues = DictMixin.itervalues
iteritems = DictMixin.iteritems
def __repr__(self):
if not self:
return '%s()' % (self.__class__.__name__,)
return '%s(%r)' % (self.__class__.__name__, self.items())
def copy(self):
return self.__class__(self)
@classmethod
def fromkeys(cls, iterable, value=None):
d = cls()
for key in iterable:
d[key] = value
return d
def __eq__(self, other):
if isinstance(other, OrderedDict):
if len(self) != len(other):
return False
for p, q in zip(self.items(), other.items()):
if p != q:
return False
return True
return dict.__eq__(self, other)
def __ne__(self, other):
return not self == other
# WeakSet from Python 2.7+ (https://code.google.com/p/weakrefset)
from _weakref import ref
class _IterationGuard(object):
# This context manager registers itself in the current iterators of the
# weak container, such as to delay all removals until the context manager
# exits.
# This technique should be relatively thread-safe (since sets are).
def __init__(self, weakcontainer):
# Don't create cycles
self.weakcontainer = ref(weakcontainer)
def __enter__(self):
w = self.weakcontainer()
if w is not None:
w._iterating.add(self)
return self
def __exit__(self, e, t, b):
w = self.weakcontainer()
if w is not None:
s = w._iterating
s.remove(self)
if not s:
w._commit_removals()
class WeakSet(object):
def __init__(self, data=None):
self.data = set()
def _remove(item, selfref=ref(self)):
self = selfref()
if self is not None:
if self._iterating:
self._pending_removals.append(item)
else:
self.data.discard(item)
self._remove = _remove
# A list of keys to be removed
self._pending_removals = []
self._iterating = set()
if data is not None:
self.update(data)
def _commit_removals(self):
l = self._pending_removals
discard = self.data.discard
while l:
discard(l.pop())
def __iter__(self):
with _IterationGuard(self):
for itemref in self.data:
item = itemref()
if item is not None:
yield item
def __len__(self):
return sum(x() is not None for x in self.data)
def __contains__(self, item):
return ref(item) in self.data
def __reduce__(self):
return (self.__class__, (list(self),),
getattr(self, '__dict__', None))
__hash__ = None
def add(self, item):
if self._pending_removals:
self._commit_removals()
self.data.add(ref(item, self._remove))
def clear(self):
if self._pending_removals:
self._commit_removals()
self.data.clear()
def copy(self):
return self.__class__(self)
def pop(self):
if self._pending_removals:
self._commit_removals()
while True:
try:
itemref = self.data.pop()
except KeyError:
raise KeyError('pop from empty WeakSet')
item = itemref()
if item is not None:
return item
def remove(self, item):
if self._pending_removals:
self._commit_removals()
self.data.remove(ref(item))
def discard(self, item):
if self._pending_removals:
self._commit_removals()
self.data.discard(ref(item))
def update(self, other):
if self._pending_removals:
self._commit_removals()
if isinstance(other, self.__class__):
self.data.update(other.data)
else:
for element in other:
self.add(element)
def __ior__(self, other):
self.update(other)
return self
# Helper functions for simple delegating methods.
def _apply(self, other, method):
if not isinstance(other, self.__class__):
other = self.__class__(other)
newdata = method(other.data)
newset = self.__class__()
newset.data = newdata
return newset
def difference(self, other):
return self._apply(other, self.data.difference)
__sub__ = difference
def difference_update(self, other):
if self._pending_removals:
self._commit_removals()
if self is other:
self.data.clear()
else:
self.data.difference_update(ref(item) for item in other)
def __isub__(self, other):
if self._pending_removals:
self._commit_removals()
if self is other:
self.data.clear()
else:
self.data.difference_update(ref(item) for item in other)
return self
def intersection(self, other):
return self._apply(other, self.data.intersection)
__and__ = intersection
def intersection_update(self, other):
if self._pending_removals:
self._commit_removals()
self.data.intersection_update(ref(item) for item in other)
def __iand__(self, other):
if self._pending_removals:
self._commit_removals()
self.data.intersection_update(ref(item) for item in other)
return self
def issubset(self, other):
return self.data.issubset(ref(item) for item in other)
__lt__ = issubset
def __le__(self, other):
return self.data <= set(ref(item) for item in other)
def issuperset(self, other):
return self.data.issuperset(ref(item) for item in other)
__gt__ = issuperset
def __ge__(self, other):
return self.data >= set(ref(item) for item in other)
def __eq__(self, other):
if not isinstance(other, self.__class__):
return NotImplemented
return self.data == set(ref(item) for item in other)
def symmetric_difference(self, other):
return self._apply(other, self.data.symmetric_difference)
__xor__ = symmetric_difference
def symmetric_difference_update(self, other):
if self._pending_removals:
self._commit_removals()
if self is other:
self.data.clear()
else:
self.data.symmetric_difference_update(ref(item) for item in other)
def __ixor__(self, other):
if self._pending_removals:
self._commit_removals()
if self is other:
self.data.clear()
else:
self.data.symmetric_difference_update(ref(item) for item in other)
return self
def union(self, other):
return self._apply(other, self.data.union)
__or__ = union
def isdisjoint(self, other):
return len(self.intersection(other)) == 0
[docs]class SortedSet(object):
'''
A sorted set based on sorted list
A sorted set implementation is used in this case because it does not
require its elements to be immutable/hashable.
#Not implemented: update functions, inplace operators
'''
def __init__(self, iterable=()):
self._items = []
self.update(iterable)
def __len__(self):
return len(self._items)
def __getitem__(self, i):
return self._items[i]
def __iter__(self):
return iter(self._items)
def __reversed__(self):
return reversed(self._items)
def __repr__(self):
return '%s(%r)' % (
self.__class__.__name__,
self._items)
def __reduce__(self):
return self.__class__, (self._items,)
def __eq__(self, other):
if isinstance(other, self.__class__):
return self._items == other._items
else:
try:
return len(other) == len(self._items) and all(item in self for item in other)
except TypeError:
return NotImplemented
def __ne__(self, other):
if isinstance(other, self.__class__):
return self._items != other._items
else:
try:
return len(other) != len(self._items) or any(item not in self for item in other)
except TypeError:
return NotImplemented
def __le__(self, other):
return self.issubset(other)
def __lt__(self, other):
return len(other) > len(self._items) and self.issubset(other)
def __ge__(self, other):
return self.issuperset(other)
def __gt__(self, other):
return len(self._items) > len(other) and self.issuperset(other)
def __and__(self, other):
return self._intersect(other)
__rand__ = __and__
def __iand__(self, other):
isect = self._intersect(other)
self._items = isect._items
return self
def __or__(self, other):
return self.union(other)
__ror__ = __or__
def __ior__(self, other):
union = self.union(other)
self._items = union._items
return self
def __sub__(self, other):
return self._diff(other)
def __rsub__(self, other):
return sortedset(other) - self
def __isub__(self, other):
diff = self._diff(other)
self._items = diff._items
return self
def __xor__(self, other):
return self.symmetric_difference(other)
__rxor__ = __xor__
def __ixor__(self, other):
sym_diff = self.symmetric_difference(other)
self._items = sym_diff._items
return self
def __contains__(self, item):
i = self._find_insertion(item)
return i < len(self._items) and self._items[i] == item
def __delitem__(self, i):
del self._items[i]
def __delslice__(self, i, j):
del self._items[i:j]
def add(self, item):
i = self._find_insertion(item)
if i < len(self._items):
if self._items[i] != item:
self._items.insert(i, item)
else:
self._items.append(item)
def update(self, iterable):
for i in iterable:
self.add(i)
def clear(self):
del self._items[:]
def copy(self):
new = sortedset()
new._items = list(self._items)
return new
def isdisjoint(self, other):
return len(self._intersect(other)) == 0
def issubset(self, other):
return len(self._intersect(other)) == len(self._items)
def issuperset(self, other):
return len(self._intersect(other)) == len(other)
def pop(self):
if not self._items:
raise KeyError("pop from empty set")
return self._items.pop()
def remove(self, item):
i = self._find_insertion(item)
if i < len(self._items):
if self._items[i] == item:
self._items.pop(i)
return
raise KeyError('%r' % item)
def union(self, *others):
union = sortedset()
union._items = list(self._items)
for other in others:
for item in other:
union.add(item)
return union
def intersection(self, *others):
isect = self.copy()
for other in others:
isect = isect._intersect(other)
if not isect:
break
return isect
def difference(self, *others):
diff = self.copy()
for other in others:
diff = diff._diff(other)
if not diff:
break
return diff
def symmetric_difference(self, other):
diff_self_other = self._diff(other)
diff_other_self = other.difference(self)
return diff_self_other.union(diff_other_self)
def _diff(self, other):
diff = sortedset()
for item in self._items:
if item not in other:
diff.add(item)
return diff
def _intersect(self, other):
isect = sortedset()
for item in self._items:
if item in other:
isect.add(item)
return isect
def _find_insertion(self, x):
# this uses bisect_left algorithm unless it has elements it can't compare,
# in which case it defaults to grouping non-comparable items at the beginning or end,
# and scanning sequentially to find an insertion point
a = self._items
lo = 0
hi = len(a)
try:
while lo < hi:
mid = (lo + hi) // 2
if a[mid] < x: lo = mid + 1
else: hi = mid
except TypeError:
# could not compare a[mid] with x
# start scanning to find insertion point while swallowing type errors
lo = 0
compared_one = False # flag is used to determine whether uncomparables are grouped at the front or back
while lo < hi:
try:
if a[lo] == x or a[lo] >= x: break
compared_one = True
except TypeError:
if compared_one: break
lo += 1
return lo
sortedset = SortedSet # backwards-compatibility
from cassandra.compat import Mapping
from six.moves import cPickle
[docs]class OrderedMap(Mapping):
'''
An ordered map that accepts non-hashable types for keys. It also maintains the
insertion order of items, behaving as OrderedDict in that regard. These maps
are constructed and read just as normal mapping types, exept that they may
contain arbitrary collections and other non-hashable items as keys::
>>> od = OrderedMap([({'one': 1, 'two': 2}, 'value'),
... ({'three': 3, 'four': 4}, 'value2')])
>>> list(od.keys())
[{'two': 2, 'one': 1}, {'three': 3, 'four': 4}]
>>> list(od.values())
['value', 'value2']
These constructs are needed to support nested collections in Cassandra 2.1.3+,
where frozen collections can be specified as parameters to others::
CREATE TABLE example (
...
value map<frozen<map<int, int>>, double>
...
)
This class derives from the (immutable) Mapping API. Objects in these maps
are not intended be modified.
'''
def __init__(self, *args, **kwargs):
if len(args) > 1:
raise TypeError('expected at most 1 arguments, got %d' % len(args))
self._items = []
self._index = {}
if args:
e = args[0]
if callable(getattr(e, 'keys', None)):
for k in e.keys():
self._insert(k, e[k])
else:
for k, v in e:
self._insert(k, v)
for k, v in six.iteritems(kwargs):
self._insert(k, v)
def _insert(self, key, value):
flat_key = self._serialize_key(key)
i = self._index.get(flat_key, -1)
if i >= 0:
self._items[i] = (key, value)
else:
self._items.append((key, value))
self._index[flat_key] = len(self._items) - 1
__setitem__ = _insert
def __getitem__(self, key):
try:
index = self._index[self._serialize_key(key)]
return self._items[index][1]
except KeyError:
raise KeyError(str(key))
def __delitem__(self, key):
# not efficient -- for convenience only
try:
index = self._index.pop(self._serialize_key(key))
self._index = dict((k, i if i < index else i - 1) for k, i in self._index.items())
self._items.pop(index)
except KeyError:
raise KeyError(str(key))
def __iter__(self):
for i in self._items:
yield i[0]
def __len__(self):
return len(self._items)
def __eq__(self, other):
if isinstance(other, OrderedMap):
return self._items == other._items
try:
d = dict(other)
return len(d) == len(self._items) and all(i[1] == d[i[0]] for i in self._items)
except KeyError:
return False
except TypeError:
pass
return NotImplemented
def __repr__(self):
return '%s([%s])' % (
self.__class__.__name__,
', '.join("(%r, %r)" % (k, v) for k, v in self._items))
def __str__(self):
return '{%s}' % ', '.join("%r: %r" % (k, v) for k, v in self._items)
def popitem(self):
try:
kv = self._items.pop()
del self._index[self._serialize_key(kv[0])]
return kv
except IndexError:
raise KeyError()
def _serialize_key(self, key):
return cPickle.dumps(key)
[docs]class OrderedMapSerializedKey(OrderedMap):
def __init__(self, cass_type, protocol_version):
super(OrderedMapSerializedKey, self).__init__()
self.cass_key_type = cass_type
self.protocol_version = protocol_version
def _insert_unchecked(self, key, flat_key, value):
self._items.append((key, value))
self._index[flat_key] = len(self._items) - 1
def _serialize_key(self, key):
return self.cass_key_type.serialize(key, self.protocol_version)
import datetime
import time
if six.PY3:
long = int
[docs]@total_ordering
class Time(object):
'''
Idealized time, independent of day.
Up to nanosecond resolution
'''
MICRO = 1000
MILLI = 1000 * MICRO
SECOND = 1000 * MILLI
MINUTE = 60 * SECOND
HOUR = 60 * MINUTE
DAY = 24 * HOUR
nanosecond_time = 0
def __init__(self, value):
"""
Initializer value can be:
- integer_type: absolute nanoseconds in the day
- datetime.time: built-in time
- string_type: a string time of the form "HH:MM:SS[.mmmuuunnn]"
"""
if isinstance(value, six.integer_types):
self._from_timestamp(value)
elif isinstance(value, datetime.time):
self._from_time(value)
elif isinstance(value, six.string_types):
self._from_timestring(value)
else:
raise TypeError('Time arguments must be a whole number, datetime.time, or string')
@property
def hour(self):
"""
The hour component of this time (0-23)
"""
return self.nanosecond_time // Time.HOUR
@property
def minute(self):
"""
The minute component of this time (0-59)
"""
minutes = self.nanosecond_time // Time.MINUTE
return minutes % 60
@property
def second(self):
"""
The second component of this time (0-59)
"""
seconds = self.nanosecond_time // Time.SECOND
return seconds % 60
@property
def nanosecond(self):
"""
The fractional seconds component of the time, in nanoseconds
"""
return self.nanosecond_time % Time.SECOND
[docs] def time(self):
"""
Return a built-in datetime.time (nanosecond precision truncated to micros).
"""
return datetime.time(hour=self.hour, minute=self.minute, second=self.second,
microsecond=self.nanosecond // Time.MICRO)
def _from_timestamp(self, t):
if t >= Time.DAY:
raise ValueError("value must be less than number of nanoseconds in a day (%d)" % Time.DAY)
self.nanosecond_time = t
def _from_timestring(self, s):
try:
parts = s.split('.')
base_time = time.strptime(parts[0], "%H:%M:%S")
self.nanosecond_time = (base_time.tm_hour * Time.HOUR +
base_time.tm_min * Time.MINUTE +
base_time.tm_sec * Time.SECOND)
if len(parts) > 1:
# right pad to 9 digits
nano_time_str = parts[1] + "0" * (9 - len(parts[1]))
self.nanosecond_time += int(nano_time_str)
except ValueError:
raise ValueError("can't interpret %r as a time" % (s,))
def _from_time(self, t):
self.nanosecond_time = (t.hour * Time.HOUR +
t.minute * Time.MINUTE +
t.second * Time.SECOND +
t.microsecond * Time.MICRO)
def __hash__(self):
return self.nanosecond_time
def __eq__(self, other):
if isinstance(other, Time):
return self.nanosecond_time == other.nanosecond_time
if isinstance(other, six.integer_types):
return self.nanosecond_time == other
return self.nanosecond_time % Time.MICRO == 0 and \
datetime.time(hour=self.hour, minute=self.minute, second=self.second,
microsecond=self.nanosecond // Time.MICRO) == other
def __ne__(self, other):
return not self.__eq__(other)
def __lt__(self, other):
if not isinstance(other, Time):
return NotImplemented
return self.nanosecond_time < other.nanosecond_time
def __repr__(self):
return "Time(%s)" % self.nanosecond_time
def __str__(self):
return "%02d:%02d:%02d.%09d" % (self.hour, self.minute,
self.second, self.nanosecond)
[docs]@total_ordering
class Date(object):
'''
Idealized date: year, month, day
Offers wider year range than datetime.date. For Dates that cannot be represented
as a datetime.date (because datetime.MINYEAR, datetime.MAXYEAR), this type falls back
to printing days_from_epoch offset.
'''
MINUTE = 60
HOUR = 60 * MINUTE
DAY = 24 * HOUR
date_format = "%Y-%m-%d"
days_from_epoch = 0
def __init__(self, value):
"""
Initializer value can be:
- integer_type: absolute days from epoch (1970, 1, 1). Can be negative.
- datetime.date: built-in date
- string_type: a string time of the form "yyyy-mm-dd"
"""
if isinstance(value, six.integer_types):
self.days_from_epoch = value
elif isinstance(value, (datetime.date, datetime.datetime)):
self._from_timetuple(value.timetuple())
elif isinstance(value, six.string_types):
self._from_datestring(value)
else:
raise TypeError('Date arguments must be a whole number, datetime.date, or string')
@property
def seconds(self):
"""
Absolute seconds from epoch (can be negative)
"""
return self.days_from_epoch * Date.DAY
[docs] def date(self):
"""
Return a built-in datetime.date for Dates falling in the years [datetime.MINYEAR, datetime.MAXYEAR]
ValueError is raised for Dates outside this range.
"""
try:
dt = datetime_from_timestamp(self.seconds)
return datetime.date(dt.year, dt.month, dt.day)
except Exception:
raise ValueError("%r exceeds ranges for built-in datetime.date" % self)
def _from_timetuple(self, t):
self.days_from_epoch = calendar.timegm(t) // Date.DAY
def _from_datestring(self, s):
if s[0] == '+':
s = s[1:]
dt = datetime.datetime.strptime(s, self.date_format)
self._from_timetuple(dt.timetuple())
def __hash__(self):
return self.days_from_epoch
def __eq__(self, other):
if isinstance(other, Date):
return self.days_from_epoch == other.days_from_epoch
if isinstance(other, six.integer_types):
return self.days_from_epoch == other
try:
return self.date() == other
except Exception:
return False
def __ne__(self, other):
return not self.__eq__(other)
def __lt__(self, other):
if not isinstance(other, Date):
return NotImplemented
return self.days_from_epoch < other.days_from_epoch
def __repr__(self):
return "Date(%s)" % self.days_from_epoch
def __str__(self):
try:
dt = datetime_from_timestamp(self.seconds)
return "%04d-%02d-%02d" % (dt.year, dt.month, dt.day)
except:
# If we overflow datetime.[MIN|MAX]
return str(self.days_from_epoch)
import socket
if hasattr(socket, 'inet_pton'):
inet_pton = socket.inet_pton
inet_ntop = socket.inet_ntop
else:
"""
Windows doesn't have socket.inet_pton and socket.inet_ntop until Python 3.4
This is an alternative impl using ctypes, based on this win_inet_pton project:
https://github.com/hickeroar/win_inet_pton
"""
import ctypes
class sockaddr(ctypes.Structure):
"""
Shared struct for ipv4 and ipv6.
https://msdn.microsoft.com/en-us/library/windows/desktop/ms740496(v=vs.85).aspx
``__pad1`` always covers the port.
When being used for ``sockaddr_in6``, ``ipv4_addr`` actually covers ``sin6_flowinfo``, resulting
in proper alignment for ``ipv6_addr``.
"""
_fields_ = [("sa_family", ctypes.c_short),
("__pad1", ctypes.c_ushort),
("ipv4_addr", ctypes.c_byte * 4),
("ipv6_addr", ctypes.c_byte * 16),
("__pad2", ctypes.c_ulong)]
if hasattr(ctypes, 'windll'):
WSAStringToAddressA = ctypes.windll.ws2_32.WSAStringToAddressA
WSAAddressToStringA = ctypes.windll.ws2_32.WSAAddressToStringA
else:
def not_windows(*args):
raise OSError("IPv6 addresses cannot be handled on Windows. "
"Missing ctypes.windll")
WSAStringToAddressA = not_windows
WSAAddressToStringA = not_windows
def inet_pton(address_family, ip_string):
if address_family == socket.AF_INET:
return socket.inet_aton(ip_string)
addr = sockaddr()
addr.sa_family = address_family
addr_size = ctypes.c_int(ctypes.sizeof(addr))
if WSAStringToAddressA(
ip_string,
address_family,
None,
ctypes.byref(addr),
ctypes.byref(addr_size)
) != 0:
raise socket.error(ctypes.FormatError())
if address_family == socket.AF_INET6:
return ctypes.string_at(addr.ipv6_addr, 16)
raise socket.error('unknown address family')
def inet_ntop(address_family, packed_ip):
if address_family == socket.AF_INET:
return socket.inet_ntoa(packed_ip)
addr = sockaddr()
addr.sa_family = address_family
addr_size = ctypes.c_int(ctypes.sizeof(addr))
ip_string = ctypes.create_string_buffer(128)
ip_string_size = ctypes.c_int(ctypes.sizeof(ip_string))
if address_family == socket.AF_INET6:
if len(packed_ip) != ctypes.sizeof(addr.ipv6_addr):
raise socket.error('packed IP wrong length for inet_ntoa')
ctypes.memmove(addr.ipv6_addr, packed_ip, 16)
else:
raise socket.error('unknown address family')
if WSAAddressToStringA(
ctypes.byref(addr),
addr_size,
None,
ip_string,
ctypes.byref(ip_string_size)
) != 0:
raise socket.error(ctypes.FormatError())
return ip_string[:ip_string_size.value - 1]
import keyword
# similar to collections.namedtuple, reproduced here because Python 2.6 did not have the rename logic
def _positional_rename_invalid_identifiers(field_names):
names_out = list(field_names)
for index, name in enumerate(field_names):
if (not all(c.isalnum() or c == '_' for c in name)
or keyword.iskeyword(name)
or not name
or name[0].isdigit()
or name.startswith('_')):
names_out[index] = 'field_%d_' % index
return names_out
def _sanitize_identifiers(field_names):
names_out = _positional_rename_invalid_identifiers(field_names)
if len(names_out) != len(set(names_out)):
observed_names = set()
for index, name in enumerate(names_out):
while names_out[index] in observed_names:
names_out[index] = "%s_" % (names_out[index],)
observed_names.add(names_out[index])
return names_out
def list_contents_to_tuple(to_convert):
if isinstance(to_convert, list):
for n, i in enumerate(to_convert):
if isinstance(to_convert[n], list):
to_convert[n] = tuple(to_convert[n])
return tuple(to_convert)
else:
return to_convert
[docs]class Point(object):
"""
Represents a point geometry for DSE
"""
x = None
"""
x coordinate of the point
"""
y = None
"""
y coordinate of the point
"""
def __init__(self, x=_nan, y=_nan):
self.x = x
self.y = y
def __eq__(self, other):
return isinstance(other, Point) and self.x == other.x and self.y == other.y
def __hash__(self):
return hash((self.x, self.y))
def __str__(self):
"""
Well-known text representation of the point
"""
return "POINT (%r %r)" % (self.x, self.y)
def __repr__(self):
return "%s(%r, %r)" % (self.__class__.__name__, self.x, self.y)
[docs] @staticmethod
def from_wkt(s):
"""
Parse a Point geometry from a wkt string and return a new Point object.
"""
if not _HAS_GEOMET:
raise DriverException("Geomet is required to deserialize a wkt geometry.")
try:
geom = wkt.loads(s)
except ValueError:
raise ValueError("Invalid WKT geometry: '{0}'".format(s))
if geom['type'] != 'Point':
raise ValueError("Invalid WKT geometry type. Expected 'Point', got '{0}': '{1}'".format(geom['type'], s))
coords = geom['coordinates']
if len(coords) < 2:
x = y = _nan
else:
x = coords[0]
y = coords[1]
return Point(x=x, y=y)
[docs]class LineString(object):
"""
Represents a linestring geometry for DSE
"""
coords = None
"""
Tuple of (x, y) coordinates in the linestring
"""
def __init__(self, coords=tuple()):
"""
'coords`: a sequence of (x, y) coordinates of points in the linestring
"""
self.coords = tuple(coords)
def __eq__(self, other):
return isinstance(other, LineString) and self.coords == other.coords
def __hash__(self):
return hash(self.coords)
def __str__(self):
"""
Well-known text representation of the LineString
"""
if not self.coords:
return "LINESTRING EMPTY"
return "LINESTRING (%s)" % ', '.join("%r %r" % (x, y) for x, y in self.coords)
def __repr__(self):
return "%s(%r)" % (self.__class__.__name__, self.coords)
[docs] @staticmethod
def from_wkt(s):
"""
Parse a LineString geometry from a wkt string and return a new LineString object.
"""
if not _HAS_GEOMET:
raise DriverException("Geomet is required to deserialize a wkt geometry.")
try:
geom = wkt.loads(s)
except ValueError:
raise ValueError("Invalid WKT geometry: '{0}'".format(s))
if geom['type'] != 'LineString':
raise ValueError("Invalid WKT geometry type. Expected 'LineString', got '{0}': '{1}'".format(geom['type'], s))
geom['coordinates'] = list_contents_to_tuple(geom['coordinates'])
return LineString(coords=geom['coordinates'])
class _LinearRing(object):
# no validation, no implicit closing; just used for poly composition, to
# mimic that of shapely.geometry.Polygon
def __init__(self, coords=tuple()):
self.coords = list_contents_to_tuple(coords)
def __eq__(self, other):
return isinstance(other, _LinearRing) and self.coords == other.coords
def __hash__(self):
return hash(self.coords)
def __str__(self):
if not self.coords:
return "LINEARRING EMPTY"
return "LINEARRING (%s)" % ', '.join("%r %r" % (x, y) for x, y in self.coords)
def __repr__(self):
return "%s(%r)" % (self.__class__.__name__, self.coords)
[docs]class Polygon(object):
"""
Represents a polygon geometry for DSE
"""
exterior = None
"""
_LinearRing representing the exterior of the polygon
"""
interiors = None
"""
Tuple of _LinearRings representing interior holes in the polygon
"""
def __init__(self, exterior=tuple(), interiors=None):
"""
'exterior`: a sequence of (x, y) coordinates of points in the linestring
`interiors`: None, or a sequence of sequences or (x, y) coordinates of points describing interior linear rings
"""
self.exterior = _LinearRing(exterior)
self.interiors = tuple(_LinearRing(e) for e in interiors) if interiors else tuple()
def __eq__(self, other):
return isinstance(other, Polygon) and self.exterior == other.exterior and self.interiors == other.interiors
def __hash__(self):
return hash((self.exterior, self.interiors))
def __str__(self):
"""
Well-known text representation of the polygon
"""
if not self.exterior.coords:
return "POLYGON EMPTY"
rings = [ring.coords for ring in chain((self.exterior,), self.interiors)]
rings = ["(%s)" % ', '.join("%r %r" % (x, y) for x, y in ring) for ring in rings]
return "POLYGON (%s)" % ', '.join(rings)
def __repr__(self):
return "%s(%r, %r)" % (self.__class__.__name__, self.exterior.coords, [ring.coords for ring in self.interiors])
[docs] @staticmethod
def from_wkt(s):
"""
Parse a Polygon geometry from a wkt string and return a new Polygon object.
"""
if not _HAS_GEOMET:
raise DriverException("Geomet is required to deserialize a wkt geometry.")
try:
geom = wkt.loads(s)
except ValueError:
raise ValueError("Invalid WKT geometry: '{0}'".format(s))
if geom['type'] != 'Polygon':
raise ValueError("Invalid WKT geometry type. Expected 'Polygon', got '{0}': '{1}'".format(geom['type'], s))
coords = geom['coordinates']
exterior = coords[0] if len(coords) > 0 else tuple()
interiors = coords[1:] if len(coords) > 1 else None
return Polygon(exterior=exterior, interiors=interiors)
_distance_wkt_pattern = re.compile("distance *\\( *\\( *([\\d\\.-]+) *([\\d+\\.-]+) *\\) *([\\d+\\.-]+) *\\) *$", re.IGNORECASE)
[docs]class Distance(object):
"""
Represents a Distance geometry for DSE
"""
x = None
"""
x coordinate of the center point
"""
y = None
"""
y coordinate of the center point
"""
radius = None
"""
radius to represent the distance from the center point
"""
def __init__(self, x=_nan, y=_nan, radius=_nan):
self.x = x
self.y = y
self.radius = radius
def __eq__(self, other):
return isinstance(other, Distance) and self.x == other.x and self.y == other.y and self.radius == other.radius
def __hash__(self):
return hash((self.x, self.y, self.radius))
def __str__(self):
"""
Well-known text representation of the point
"""
return "DISTANCE ((%r %r) %r)" % (self.x, self.y, self.radius)
def __repr__(self):
return "%s(%r, %r, %r)" % (self.__class__.__name__, self.x, self.y, self.radius)
[docs] @staticmethod
def from_wkt(s):
"""
Parse a Distance geometry from a wkt string and return a new Distance object.
"""
distance_match = _distance_wkt_pattern.match(s)
if distance_match is None:
raise ValueError("Invalid WKT geometry: '{0}'".format(s))
x, y, radius = distance_match.groups()
return Distance(x, y, radius)
[docs]class Duration(object):
"""
Cassandra Duration Type
"""
months = 0
days = 0
nanoseconds = 0
def __init__(self, months=0, days=0, nanoseconds=0):
self.months = months
self.days = days
self.nanoseconds = nanoseconds
def __eq__(self, other):
return isinstance(other, self.__class__) and self.months == other.months and self.days == other.days and self.nanoseconds == other.nanoseconds
def __repr__(self):
return "Duration({0}, {1}, {2})".format(self.months, self.days, self.nanoseconds)
def __str__(self):
has_negative_values = self.months < 0 or self.days < 0 or self.nanoseconds < 0
return '%s%dmo%dd%dns' % (
'-' if has_negative_values else '',
abs(self.months),
abs(self.days),
abs(self.nanoseconds)
)
[docs]class DateRangePrecision(object):
"""
An "enum" representing the valid values for :attr:`DateRange.precision`.
"""
YEAR = 'YEAR'
"""
"""
MONTH = 'MONTH'
"""
"""
DAY = 'DAY'
"""
"""
HOUR = 'HOUR'
"""
"""
MINUTE = 'MINUTE'
"""
"""
SECOND = 'SECOND'
"""
"""
MILLISECOND = 'MILLISECOND'
"""
"""
PRECISIONS = (YEAR, MONTH, DAY, HOUR,
MINUTE, SECOND, MILLISECOND)
"""
"""
@classmethod
def _to_int(cls, precision):
return cls.PRECISIONS.index(precision.upper())
@classmethod
def _round_to_precision(cls, ms, precision, default_dt):
try:
dt = utc_datetime_from_ms_timestamp(ms)
except OverflowError:
return ms
precision_idx = cls._to_int(precision)
replace_kwargs = {}
if precision_idx <= cls._to_int(DateRangePrecision.YEAR):
replace_kwargs['month'] = default_dt.month
if precision_idx <= cls._to_int(DateRangePrecision.MONTH):
replace_kwargs['day'] = default_dt.day
if precision_idx <= cls._to_int(DateRangePrecision.DAY):
replace_kwargs['hour'] = default_dt.hour
if precision_idx <= cls._to_int(DateRangePrecision.HOUR):
replace_kwargs['minute'] = default_dt.minute
if precision_idx <= cls._to_int(DateRangePrecision.MINUTE):
replace_kwargs['second'] = default_dt.second
if precision_idx <= cls._to_int(DateRangePrecision.SECOND):
# truncate to nearest 1000 so we deal in ms, not us
replace_kwargs['microsecond'] = (default_dt.microsecond // 1000) * 1000
if precision_idx == cls._to_int(DateRangePrecision.MILLISECOND):
replace_kwargs['microsecond'] = int(round(dt.microsecond, -3))
return ms_timestamp_from_datetime(dt.replace(**replace_kwargs))
@classmethod
def round_up_to_precision(cls, ms, precision):
# PYTHON-912: this is the only case in which we can't take as upper bound
# datetime.datetime.max because the month from ms may be February and we'd
# be setting 31 as the month day
if precision == cls.MONTH:
date_ms = utc_datetime_from_ms_timestamp(ms)
upper_date = datetime.datetime.max.replace(year=date_ms.year, month=date_ms.month,
day=calendar.monthrange(date_ms.year, date_ms.month)[1])
else:
upper_date = datetime.datetime.max
return cls._round_to_precision(ms, precision, upper_date)
@classmethod
def round_down_to_precision(cls, ms, precision):
return cls._round_to_precision(ms, precision, datetime.datetime.min)
[docs]@total_ordering
class DateRangeBound(object):
"""DateRangeBound(value, precision)
Represents a single date value and its precision for :class:`DateRange`.
.. attribute:: milliseconds
Integer representing milliseconds since the UNIX epoch. May be negative.
.. attribute:: precision
String representing the precision of a bound. Must be a valid
:class:`DateRangePrecision` member.
:class:`DateRangeBound` uses a millisecond offset from the UNIX epoch to
allow :class:`DateRange` to represent values `datetime.datetime` cannot.
For such values, string representions will show this offset rather than the
CQL representation.
"""
milliseconds = None
precision = None
def __init__(self, value, precision):
"""
:param value: a value representing ms since the epoch. Accepts an
integer or a datetime.
:param precision: a string representing precision
"""
if precision is not None:
try:
self.precision = precision.upper()
except AttributeError:
raise TypeError('precision must be a string; got %r' % precision)
if value is None:
milliseconds = None
elif isinstance(value, six.integer_types):
milliseconds = value
elif isinstance(value, datetime.datetime):
value = value.replace(
microsecond=int(round(value.microsecond, -3))
)
milliseconds = ms_timestamp_from_datetime(value)
else:
raise ValueError('%r is not a valid value for DateRangeBound' % value)
self.milliseconds = milliseconds
self.validate()
def __eq__(self, other):
if not isinstance(other, self.__class__):
return NotImplemented
return (self.milliseconds == other.milliseconds and
self.precision == other.precision)
def __lt__(self, other):
return ((str(self.milliseconds), str(self.precision)) <
(str(other.milliseconds), str(other.precision)))
[docs] def datetime(self):
"""
Return :attr:`milliseconds` as a :class:`datetime.datetime` if possible.
Raises an `OverflowError` if the value is out of range.
"""
return utc_datetime_from_ms_timestamp(self.milliseconds)
def validate(self):
attrs = self.milliseconds, self.precision
if attrs == (None, None):
return
if None in attrs:
raise TypeError(
("%s.datetime and %s.precision must not be None unless both "
"are None; Got: %r") % (self.__class__.__name__,
self.__class__.__name__,
self)
)
if self.precision not in DateRangePrecision.PRECISIONS:
raise ValueError(
"%s.precision: expected value in %r; got %r" % (
self.__class__.__name__,
DateRangePrecision.PRECISIONS,
self.precision
)
)
[docs] @classmethod
def from_value(cls, value):
"""
Construct a new :class:`DateRangeBound` from a given value. If
possible, use the `value['milliseconds']` and `value['precision']` keys
of the argument. Otherwise, use the argument as a `(milliseconds,
precision)` iterable.
:param value: a dictlike or iterable object
"""
if isinstance(value, cls):
return value
# if possible, use as a mapping
try:
milliseconds, precision = value.get('milliseconds'), value.get('precision')
except AttributeError:
milliseconds = precision = None
if milliseconds is not None and precision is not None:
return DateRangeBound(value=milliseconds, precision=precision)
# otherwise, use as an iterable
return DateRangeBound(*value)
def round_up(self):
if self.milliseconds is None or self.precision is None:
return self
self.milliseconds = DateRangePrecision.round_up_to_precision(
self.milliseconds, self.precision
)
return self
def round_down(self):
if self.milliseconds is None or self.precision is None:
return self
self.milliseconds = DateRangePrecision.round_down_to_precision(
self.milliseconds, self.precision
)
return self
_formatter_map = {
DateRangePrecision.YEAR: '%Y',
DateRangePrecision.MONTH: '%Y-%m',
DateRangePrecision.DAY: '%Y-%m-%d',
DateRangePrecision.HOUR: '%Y-%m-%dT%HZ',
DateRangePrecision.MINUTE: '%Y-%m-%dT%H:%MZ',
DateRangePrecision.SECOND: '%Y-%m-%dT%H:%M:%SZ',
DateRangePrecision.MILLISECOND: '%Y-%m-%dT%H:%M:%S',
}
def __str__(self):
if self == OPEN_BOUND:
return '*'
try:
dt = self.datetime()
except OverflowError:
return '%sms' % (self.milliseconds,)
formatted = dt.strftime(self._formatter_map[self.precision])
if self.precision == DateRangePrecision.MILLISECOND:
# we'd like to just format with '%Y-%m-%dT%H:%M:%S.%fZ', but %f
# gives us more precision than we want, so we strftime up to %S and
# do the rest ourselves
return '%s.%03dZ' % (formatted, dt.microsecond / 1000)
return formatted
def __repr__(self):
return '%s(milliseconds=%r, precision=%r)' % (
self.__class__.__name__, self.milliseconds, self.precision
)
OPEN_BOUND = DateRangeBound(value=None, precision=None)
"""
Represents `*`, an open value or bound for :class:`DateRange`.
"""
[docs]@total_ordering
class DateRange(object):
"""DateRange(lower_bound=None, upper_bound=None, value=None)
DSE DateRange Type
.. attribute:: lower_bound
:class:`~DateRangeBound` representing the lower bound of a bounded range.
.. attribute:: upper_bound
:class:`~DateRangeBound` representing the upper bound of a bounded range.
.. attribute:: value
:class:`~DateRangeBound` representing the value of a single-value range.
As noted in its documentation, :class:`DateRangeBound` uses a millisecond
offset from the UNIX epoch to allow :class:`DateRange` to represent values
`datetime.datetime` cannot. For such values, string representions will show
this offset rather than the CQL representation.
"""
lower_bound = None
upper_bound = None
value = None
def __init__(self, lower_bound=None, upper_bound=None, value=None):
"""
:param lower_bound: a :class:`DateRangeBound` or object accepted by
:meth:`DateRangeBound.from_value` to be used as a
:attr:`lower_bound`. Mutually exclusive with `value`. If
`upper_bound` is specified and this is not, the :attr:`lower_bound`
will be open.
:param upper_bound: a :class:`DateRangeBound` or object accepted by
:meth:`DateRangeBound.from_value` to be used as a
:attr:`upper_bound`. Mutually exclusive with `value`. If
`lower_bound` is specified and this is not, the :attr:`upper_bound`
will be open.
:param value: a :class:`DateRangeBound` or object accepted by
:meth:`DateRangeBound.from_value` to be used as :attr:`value`. Mutually
exclusive with `lower_bound` and `lower_bound`.
"""
# if necessary, transform non-None args to DateRangeBounds
lower_bound = (DateRangeBound.from_value(lower_bound).round_down()
if lower_bound else lower_bound)
upper_bound = (DateRangeBound.from_value(upper_bound).round_up()
if upper_bound else upper_bound)
value = (DateRangeBound.from_value(value).round_down()
if value else value)
# if we're using a 2-ended range but one bound isn't specified, specify
# an open bound
if lower_bound is None and upper_bound is not None:
lower_bound = OPEN_BOUND
if upper_bound is None and lower_bound is not None:
upper_bound = OPEN_BOUND
self.lower_bound, self.upper_bound, self.value = (
lower_bound, upper_bound, value
)
self.validate()
def validate(self):
if self.value is None:
if self.lower_bound is None or self.upper_bound is None:
raise ValueError(
'%s instances where value attribute is None must set '
'lower_bound or upper_bound; got %r' % (
self.__class__.__name__,
self
)
)
else: # self.value is not None
if self.lower_bound is not None or self.upper_bound is not None:
raise ValueError(
'%s instances where value attribute is not None must not '
'set lower_bound or upper_bound; got %r' % (
self.__class__.__name__,
self
)
)
def __eq__(self, other):
if not isinstance(other, self.__class__):
return NotImplemented
return (self.lower_bound == other.lower_bound and
self.upper_bound == other.upper_bound and
self.value == other.value)
def __lt__(self, other):
return ((str(self.lower_bound), str(self.upper_bound), str(self.value)) <
(str(other.lower_bound), str(other.upper_bound), str(other.value)))
def __str__(self):
if self.value:
return str(self.value)
else:
return '[%s TO %s]' % (self.lower_bound, self.upper_bound)
def __repr__(self):
return '%s(lower_bound=%r, upper_bound=%r, value=%r)' % (
self.__class__.__name__,
self.lower_bound, self.upper_bound, self.value
)
[docs]@total_ordering
class Version(object):
"""
Internal minimalist class to compare versions.
A valid version is: <int>.<int>.<int>.<int or str>.
TODO: when python2 support is removed, use packaging.version.
"""
_version = None
major = None
minor = 0
patch = 0
build = 0
prerelease = 0
def __init__(self, version):
self._version = version
if '-' in version:
version_without_prerelease, self.prerelease = version.split('-', 1)
else:
version_without_prerelease = version
parts = list(reversed(version_without_prerelease.split('.')))
if len(parts) > 4:
prerelease_string = "-{}".format(self.prerelease) if self.prerelease else ""
log.warning("Unrecognized version: {}. Only 4 components plus prerelease are supported. "
"Assuming version as {}{}".format(version, '.'.join(parts[:-5:-1]), prerelease_string))
try:
self.major = int(parts.pop())
except ValueError:
six.reraise(
ValueError,
ValueError("Couldn't parse version {}. Version should start with a number".format(version)),
sys.exc_info()[2]
)
try:
self.minor = int(parts.pop()) if parts else 0
self.patch = int(parts.pop()) if parts else 0
if parts: # we have a build version
build = parts.pop()
try:
self.build = int(build)
except ValueError:
self.build = build
except ValueError:
assumed_version = "{}.{}.{}.{}-{}".format(self.major, self.minor, self.patch, self.build, self.prerelease)
log.warning("Unrecognized version {}. Assuming version as {}".format(version, assumed_version))
def __hash__(self):
return self._version
def __repr__(self):
version_string = "Version({0}, {1}, {2}".format(self.major, self.minor, self.patch)
if self.build:
version_string += ", {}".format(self.build)
if self.prerelease:
version_string += ", {}".format(self.prerelease)
version_string += ")"
return version_string
def __str__(self):
return self._version
@staticmethod
def _compare_version_part(version, other_version, cmp):
if not (isinstance(version, six.integer_types) and
isinstance(other_version, six.integer_types)):
version = str(version)
other_version = str(other_version)
return cmp(version, other_version)
def __eq__(self, other):
if not isinstance(other, Version):
return NotImplemented
return (self.major == other.major and
self.minor == other.minor and
self.patch == other.patch and
self._compare_version_part(self.build, other.build, lambda s, o: s == o) and
self._compare_version_part(self.prerelease, other.prerelease, lambda s, o: s == o)
)
def __gt__(self, other):
if not isinstance(other, Version):
return NotImplemented
is_major_ge = self.major >= other.major
is_minor_ge = self.minor >= other.minor
is_patch_ge = self.patch >= other.patch
is_build_gt = self._compare_version_part(self.build, other.build, lambda s, o: s > o)
is_build_ge = self._compare_version_part(self.build, other.build, lambda s, o: s >= o)
# By definition, a prerelease comes BEFORE the actual release, so if a version
# doesn't have a prerelease, it's automatically greater than anything that does
if self.prerelease and not other.prerelease:
is_prerelease_gt = False
elif other.prerelease and not self.prerelease:
is_prerelease_gt = True
else:
is_prerelease_gt = self._compare_version_part(self.prerelease, other.prerelease, lambda s, o: s > o) \
return (self.major > other.major or
(is_major_ge and self.minor > other.minor) or
(is_major_ge and is_minor_ge and self.patch > other.patch) or
(is_major_ge and is_minor_ge and is_patch_ge and is_build_gt) or
(is_major_ge and is_minor_ge and is_patch_ge and is_build_ge and is_prerelease_gt)
)